
 

 

 

 

 

INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section C 
 

Uncertainity 



Representing uncertain 

knowledge 
Points 

Symbolic and numerical 
uncertainty 

The Closed World Assumption 

Predicate completion 

Taxonomic hierarchies 

Abduction 

Truth maintenance 

Bayes’s rule 

Certainty factors 

Fuzzy sets 



Symbolic and numerical uncertainty 

 Symbolic uncertainty: defeasible 

reasoning. 

• Non-monotonic logic: 
make conclusions that cause no inconsistency. 

• Default logic. 

• Modal logic -- necessity and possibility: 
necessarily Φ ≡ ¬ possibly ¬ Φ 

possibly Φ  ≡ ¬ necessarily ¬ Φ 

 Numeric uncertainty: statistical 

reasoning, certainty factors. 

• Bayesian probability theory. 

• Fuzzy logic (theory of fuzzy sets). 



Examples of approximate reasoning in 

real life 

• Judging by general shape, not by details. 

• Jumping to conclusions without sufficient 
evidence. 
(Consider a lawn sign, seen from afar.) 

• Understanding language. 

• ... 

• ... 



Why we need more than first-order logic 

Complete ↔ incomplete knowledge: 

the world cannot be represented completely, 
there are exceptions and qualified statements. 

Generality ↔ specificity (and typicality): 

absolute statements ignore individual variety. 

Consistency ↔ inconsistency: 

conflicting views cannot be represented in first-order 
logic, 
not within one theory. 

Monotonic ↔ defeasible reasoning: 

a change of mind cannot be represented. 

Absolute ↔ tentative statements: 

partial commitment cannot be represented, 
statistical tendencies cannot be expressed. 

Finality ↔ openness of knowledge: 

learning should not only mean new theorems. 



The Closed-World Assumption 

A complete theory in first-order logic must 
include either a fact or its negation. 

The Closed World Assumption (CWA) states 
that the only true facts are those that are 
explicitly listed as true (in a knowledge base, in 
a database) or are provably true. 

We may extend the theory by adding to it 
explicit negations of facts that cannot be 
proven. 

In Prolog, this principle is implemented by 
"finite failure", or "negation as failure". 



Predicate completion 

The fact p(a) could be rewritten equivalently as 

∀x x = a  p(x) 

A completion of this quantified formula is a formula 
in which we enumerate all objects with property p. 
In this tiny example: 
∀x p(x)  x = a 

A larger example: the world of birds. 
 ∀x ostrich(x)  bird(x) 

 ¬ostrich(Sam) 

 bird(Tweety) 

To complete the predicate bird, we say: 

∀x bird(x)  (ostrich(x)  x = Tweety) 

This allows us to prove, for example, that 
¬bird(Sam) 



Predicate completion (2) 

How to achieve non-monotonic reasoning? Let us 
add a new formula: 

 ∀x penguin(x)  bird(x) 

 ∀x ostrich(x)  bird(x) 

 ¬ostrich(Sam) 

 bird(Tweety) 

A new completion of the predicate bird would be: 

∀x bird(x)  

(ostrich(x)  penguin(x)  x = 
Tweety) 

We cannot prove ¬bird(Sam) any more (why?). 



Taxonomic hierarchies and defaults 

thing(Tweety) 

bird(x)  thing(x) 

ostrich(x)  bird(x) 

flying-ostrich(x)  ostrich(x) 

The following set of formulae represents typicality 

and exceptions: 

thing(x)  ¬bird(x)  ¬flies(x) 

bird(x)  ¬ostrich(x)  flies(x) 

ostrich(x)  ¬flying-ostrich(x)  

 ¬flies(x) 

flying-ostrich(x)  flies(x) 



Taxonomic hierarchies and defaults (2) 

This works, but is too specific. We need a way of 

showing exceptions explicitly. An exception is a 

departure from normality, and a way of blocking 

inheritance: 

thing(x)  ¬abnormalt(x)  ¬flies(x) 

bird(x)  abnormalt(x) 

bird(x)  ¬abnormalb(x)  flies(x) 

ostrich(x)   abnormalb(x) 

ostrich(x)  ¬abnormalo(x)  

 ¬flies(x) 

flying-ostrich(x)  abnormalo(x) 

flying-ostrich(x)  flies(x) 



Taxonomic hierarchies and defaults (3) 

The taxonomy is now as follows: 

flying-ostrich(x)  ostrich(x) 

flying-ostrich(x)  abnormalo(x) 

ostrich(x)  bird(x) 

ostrich(x)  abnormalb(x) 

bird(x)  thing(x) 

bird(x)  abnormalt(x) 

thing(Tweety) 

The properties of classes: 

thing(x)  ¬abnormalt(x)  ¬flies(x) 

bird(x)  ¬abnormalb(x)  flies(x) 

ostrich(x)  ¬abnormalo(x)  ¬flies(x) 

flying-ostrich(x)  flies(x) 



Taxonomic hierarchies and defaults (4) 

This kind of formulae can be used to deduce 
properties of objects, if we can also supply the 
completion. For example, does Tweety fly?  

The completion: 

thing(x)  bird(x)  x = Tweety 

bird(x)  ostrich(x) 

ostrich(x)  flying-ostrich(x) 

abnormalt(x)  bird(x) 

abnormalb(x)  ostrich(x) 

abnormalo(x)  flying-ostrich(x) 

¬flying-ostrich(x) 



Taxonomic hierarchies and defaults (5) 

The last formula is equivalent to 

flying-ostrich(x)  false 

which reflects the fact that no taxonomical rule has flying-ostrich as a 

conclusion. 

We can now prove all of these: 

¬flying-ostrich(Tweety) 

¬ostrich(Tweety) 

¬bird(Tweety) 

¬abnormalt(Tweety) 

so we can show that 

¬flies(Tweety) 



Taxonomic hierarchies and defaults (6) 

This hierarchy again can be changed non-monotonically. Suppose that 

we add 

bird(Tweety) 

to the taxonomy. 
 

The new completion of the predicate bird will be: 

bird(x)  ostrich(x)  x = Tweety 

instead of 

bird(x)  ostrich(x) 

 

We will not be able to prove 

¬abnormalt(Tweety) 

any more. We will, however, be able to prove 

¬abnormalb(Tweety) 



A quaker and a republican 

Quakers are pacifists. Republicans are not pacifists. Richard is a 

republican and a quaker. Is he a pacifist? 

These rules are ambiguous. Let us clarify: 

Only a typical quaker is a pacifist. Only a typical republican is not 

a pacifist. 

This can be expressed in terms of consistency: 

∀x quaker(x)  CONSISTENT(pacifist(x))  

 pacifist(x) 

∀x republican(x)  CONSISTENT(¬pacifist(x))  

 ¬pacifist(x) 

If we apply the first rule to Richard, we find he is a pacifist 

(nothing contradicts this conclusion), but then the second rule 
cannot be used—and vice versa. In effect, neither pacifist(x) 

nor ¬pacifist(x) can be proven. 



Abduction ... demonstrated on one example 

Abduction means systematic guessing: "infer" an assumption from a 

conclusion. For example, the following formula: 

∀x rainedOn(x)  wet(x) 

could be used "backwards" with a specific x:  

if wet(Tree) then rainedOn(Tree) 

This, however, would not be logically justified. We could say: 

wet(Tree)  CONSISTENT(rainedOn(Tree))  

       rainedOn(Tree) 

We could also attach probabilities, for example like this: 

wet(Tree)  rainedOn(Tree) || 70% 

wet(Tree)  morningDewOn(Tree) || 20% 

wet(Tree)  sprinkled(Tree) || 10% 



Truth maintenance 

 … demonstrated on one 

example 

happy(a) 
truth value: UNKNOWN 

justification: none 

happy(b) 
truth value: UNKNOWN 

justification: none 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

The first formula arrives: 

we build a partial network. 

happy(a)  happy(b) 

 

  

 

 



Truth maintenance (2) 

happy(a) 
truth value: TRUE 

justification: given 

happy(b) 
truth value: TRUE 

justification: deduced 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

A new fact: incorporate it 

into the network. 

happy(a) 

 

  

 

 



Truth maintenance (3) 

A new rule and a new fact: 

happy(b)  happy(c) 

happy(d) 

happy(a) 
truth value: TRUE 

justification: given 

 

   

 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

happy(b) 
truth value: TRUE 

justification: deduced 

happy (b)  happy(c) 
truth value: TRUE 

justification: given 

happy(c) 
truth value: TRUE 

justification: deduced 

 

   

 

happy(d) 
truth value: TRUE 

justification: given 



Truth maintenance (4) 

This rule causes trouble: 

happy(d)  happy(c) 

happy (b)  happy(c) 
truth value: TRUE 

justification: given 

happy(d) 
truth value: TRUE 

justification: given 

happy(c) 
truth value: TRUE 

justification: deduced 

happy (d)  happy(c) 
truth value: TRUE 

justification: given 

happy(c) 
truth value: TRUE 

justification: deduced 

 

   

 

 

 

   

 

happy(a) 
truth value: TRUE 

justification: given 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

happy(b) 
truth value: TRUE 

justification: 

deduced 

 

   

 



Truth maintenance (5) 

One possible fix: disable 

happy(d)  happy(c) 

happy (b)  happy(c) 
truth value: TRUE 

justification: given 

happy(d) 
truth value: TRUE 

justification: given 

happy (d)  happy(c) 
truth value: FALSE 

justification: assumed 

happy(c) 
truth value: TRUE 

justification: deduced 

 

   

 

happy(a) 
truth value: TRUE 

justification: given 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

happy(b) 
truth value: TRUE 

justification: 

deduced 

 

   

 



Truth maintenance (6) 

Another fix: disable 

happy(b)  happy(c) 

happy (b)  happy(c) 
truth value: FALSE 

justification: assumed 

happy(d) 
truth value: TRUE 

justification: given 

happy(c) 
truth value: TRUE 

justification: deduced 

happy (d)  happy(c) 
truth value: TRUE 

justification: given 

 

   

 

happy(a) 
truth value: TRUE 

justification: given 

happy (a)  happy(b) 
truth value: TRUE 

justification: given 

happy(b) 
truth value: TRUE 

justification: deduced 

 

   

 



Bayes’s theorem 

• Bayesian probability theory. 

• Fuzzy logic (only signalled here). 

• Dempster-Shafer theory (not discussed here). 

Bayes's theorem allows us to compute how 
probable it is that a hypothesis Hi follows from a 
piece of evidence E (for example, from a symptom 
or a measurement). 

The required data: the probability of Hj and the 
probability of E given Hj for all possible hypotheses. 



Bayes’s theorem (2) 

Medical diagnosis is a handy example. A 

patient may have a cold, a flu, pneumonia, 

rheumatism, and so on. The usual symptoms 

are high fever, short breath, runny nose, and so 

on. 

We need the probabilities (based on statistical 

data?) of all diseases, and the probabilities of 

high fever, short breath, runny nose in the case 

of a cold, a flu, pneumonia, rheumatism. [This is 

asking a lot!] 

We would also like to assume that all 

relationships between Hj and E are mutually 

independent. [This is asking even more!] 



Bayes’s theorem (3) 

The probability data: 

p( Hi | E ) the probability of Hi given E. 

p( Hi ) the overall probability of Hi. 

p( E | Hi ) the probability of observing E 
given Hi. 

Bayes' theorem 

p( Hi | E ) = ————————— 
p( E | Hi ) * p( Hi ) 

 p( E | Hj ) * p( Hj ) j 



Bayes’s theorem (4) 

If we assume that all the conditional 
probabilities under summation are 
independent, we can simplify the 
formula: 

p( Hi | E ) = ————————— 
p( E | Hi ) * p( Hi ) 

p( E ) 



Bayes’s theorem (5) 

"A poker player closes one eye 9 times out of 10 
before passing a hand. He passes 50% of the hands, 
and closes one eye during 60% of the hands. What is 
the probability that he will pass a hand given that he 
closes one eye?" 

Hj: the player passes a hand. 

E: the player closes one eye. 

p( E | Hj )  =  0.9 

p( E )  =  0.6 

p( Hj )  =  0.5 

p( Hj | E )  =  0.9 * 0.5 / 0.6   =  0.75 

Example 



Odds calculation 

Yet another version of Bayes’s 
formula is based on the 
concepts of odds and 
likelihood. 

p( H | E ) = ————————— 
p( E | H ) * p( H ) 

p( E ) 

p( H | E ) = ————————— 
p( E | H ) * p( H ) 

p( E ) 



Odds calculation (2) 

These two formulae give 
this: 

————— = ————————— 
p( E | H ) * p( H ) p( H | E ) 

p( H | E ) p( E | H ) * p( H ) 
The odds of event e: 

O( e ) = ———— = ————— 
p( e ) p( e ) 

p( e ) 1 - p( e ) 

We note that p( H | E ) + p( ¬H | E) = 1. 



Odds calculation (3) 

O( H | E ) = —————— * O( H ) 
p( E | H ) 

p( E | H ) 

Define the fraction as the likelihood ratio (E, H) of a 

piece of evidence E with respect to hypothesis H: 

O( H | E ) = (E, H) * O( H ) 

An intuition: how to compute the new odds of H (given 

additional evidence E) from the previous odds of H. 

 > 1 strengthens our belief in H. 



Odds calculation (4) 

25% of students in the AI course get an A. 

80% of students who get an A do all homework. 

60% of students who do not get an A do all homework. 

75% of students who get an A are CS majors.  

50% of students who do not get an A are CS majors. 

Irene does all her homework is the AI course. 

Mary is a CS major and does all her homework. 

What are Irene's and Mary's odds of getting an A? 
 

Let A = "gets an A". 

C = "is a CS major". 

W = "does all homework". 

Example 



Odds calculation (5) 

p(A)  =  0.25  

p(W | A)  =  0.8 p(W | 
¬A)  =  0.6 

p(C | A)  =  0.75 p(C | ¬A)  =  0.5 

Example 

O( A | W ) = —————— = —————————— 

p( W | A ) * p( A ) p( A | W ) 

p( A | W ) p( W | A ) * p( A ) 

= ————— = — 
4 0.8 * 0.25 

0.6 * 0.75 9 



Odds calculation (6) 

p(A)  =  0.25  

p(W | A)  =  0.8 p(W | 
¬A)  =  0.6 

p(C | A)  =  0.75 p(C | 
¬A)  =  0.5 

Example 

O( A | CW ) = ——————— = ——————————— 

p( CW | A ) * p( A ) p( A | CW ) 

p( A | CW ) p( CW | A ) * p( A ) 

= ——————————————— = ———— = — 
2 

3 

p( C | A ) * p( W | A ) * p( A ) 

p( C | A ) * p( W | A ) * p( A ) 

0.75 * 4 

0.5 * 9 



The Stanford certainty factor algebra 

MB(H | E): the measure of belief in H given 
E. 

MD(H | E): the measure of disbelief in H 
given E. 

Each piece of evidence must be either for or 
against a hypothesis: 

either 0 < MB(H | E) < 1 while MD(H | E) = 0, 

or 0 < MD(H | E) < 1 while MB(H | E) = 0. 

The certainty factor is: 

CF(H | E) = MB(H | E) - MD(H | E) 

Textbook, section 9.2.1 



The Stanford certainty factor algebra (2) 

Certainty factors are attached to premises of rules in production systems (it 

started with MYCIN). We need to calculate the CF for conjunctions and 

disjunctions: 

CF(P1  P2) = min( CF(P1), CF(P2) ) 

CF(P1  P2) = max( CF(P1), CF(P2) ) 

We also need to compute the CF of a result supported by two rules with 

factors CF1 and CF2: 

CF1 + CF2 - CF1 * CF2 when CF1 > 0, CF2 > 0, 

CF1 + CF2 + CF1* CF2 when CF1 < 0, CF2 < 0, 

       CF1 + CF2 
————————— when signs 
differ. 
1 - min(|CF1|, |CF2|) 



Fuzzy sets 
Read: textbook, section 9.2.2 

A crisp set C  S is defined by a characteristic 

function C(s): S  {0, 1}. 

 0 if s  

C 

C(s) =  

 1 if s  

C 

{ 

A fuzzy set F  S is defined by a 

membership function F(s): S  [0.0, 1.0]. 

 0.0 if s is not in F 

F(s) = 0.0 < m < 1.0 if s is partially 

in F 

 1.0 if s is totally in F 

{ 

F(s) describes to what degree s belongs to F: 1.0 means 

"definitely belongs", 0.0 means "definitely does not belong", 

other values indicate intermediate "degrees” of belonging. 



Fuzzy sets (2) 

(a)  Boolean Logic. (b)  Multi-valued Logic.

0  1 10 0.2 0.4 0.6 0.8 100 1 10

Range of logical values in Boolean and fuzzy logic 

©Negnevitsky 

2002 



Fuzzy sets (3) 

Consider N, the set of positive integers. 

Let F  N be the set of "small integers”. 

Let F be like this: 

 F(1) = 1.0 

 F(2) = 1.0 

 F(3) = 0.9 

 F(4) = 0.8 

 ... 

 F(50) = 0.001 

 ... 

F defines a probability distribution for statements such as "X is a small 

integer". 



Fuzzy sets (4) 

150 210170 180 190 200160

Height, cm
Degree of
Membership

Tall Men

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160

Degree of
Membership

170

1.0

0.0

0.2

0.4

0.6

0.8

Height, cm

Fuzzy Sets

Crisp Sets

Degree of Membership

Fuzzy

Mark

John

Tom

Bob

Bill

1

1

1

0

0

1.00

1.00

0.98

0.82

0.78

Peter

Steven

Mike

David

Chris

Crisp

1

0

0

0

0

0.24

0.15

0.06

0.01

0.00

Name Height, cm

205

198

181

167

155

152

158

172

179

208

©Negnevitsky 

2002 

Tall men 



Fuzzy sets (5) 

Sets of short, 
average and 
tall men 

150 210170 180 190 200160

Height, cm
Degree of
Membership

Tall Men

150 210180 190 200

1.0

0.0

0.2

0.4

0.6

0.8

160

Degree of
Membership

Short Average ShortTall

170

1.0

0.0

0.2

0.4

0.6

0.8

Fuzzy Sets

Crisp Sets

Short Average

Tall

Tall
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.. and a man 
184 cm tall 



Fuzzy sets (6) 

Basic operations on fuzzy sets 

A(x) = 1 - A(x) 

A  B(x) = min (A(x), B(x)) = A(x)  B(x) 

A  B(x) = max (A(x), B(x)) = A(x)  B(x) 

 

This is the tip of a (fuzzy) iceberg. We have fuzzy “logic” and fuzzy 

rules, fuzzy inference, fuzzy expert systems, and so on. 

Even fuzzy cubes... 

http://ceeserver.cee.cornell.edu/asce/ConcreteCanoe/Icebreaker/pics/nonraceday/fuzzy_cubes.JPG 

http://ceeserver.cee.cornell.edu/asce/ConcreteCanoe/Icebreaker/pics/nonraceday/fuzzy_cubes.JPG

